Used words
don't worry
be happy
smile
love
To
find
the
trigonometric
values
of
cosecant
secant
and
cotangent
for
30
degrees
60
degrees
we
can
first
sine
cosine
tangent
these
angles
using
unit
circle
or
identities
then
take
reciprocals
to
get
cotangent.
1.
For
degrees:
-
\(
\sin(30^\circ)
=
\frac{1}{2}
\)
\cos(30^\circ)
\frac{\sqrt{3}}{2}
\tan(30^\circ)
\frac{1}{\sqrt{3}}
\frac{\sqrt{3}}{3}
Now
cotangent:
\csc(30^\circ)
\frac{1}{\sin(30^\circ)}
\frac{1}{1/2}
2
\sec(30^\circ)
\frac{1}{\cos(30^\circ)}
\frac{1}{\sqrt{3}/2}
\frac{2}{\sqrt{3}}
\frac{2\sqrt{3}}{3}
\cot(30^\circ)
\frac{1}{\tan(30^\circ)}
\frac{1}{\sqrt{3}/3}
\frac{3}{\sqrt{3}}
\sqrt{3}
2.
\sin(60^\circ)
\cos(60^\circ)
\tan(60^\circ)
\csc(60^\circ)
\frac{1}{\sin(60^\circ)}
\sec(60^\circ)
\frac{1}{\cos(60^\circ)}
\cot(60^\circ)
\frac{1}{\tan(60^\circ)}
Therefore
are:
\(\csc(30^\circ)
2\)
\(\sec(30^\circ)
\frac{2\sqrt{3}}{3}\)
\(\cot(30^\circ)
\sqrt{3}\).
\(\csc(60^\circ)
\(\sec(60^\circ)
\(\cot(60^\circ)
\frac{\sqrt{3}}{3}\).
Create your own